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Abstract

This paper discusses the calculation of sensitivities, or derivatives, for op-

timization problems involving systems governed by differential equations and

other state relations. The subject is examined from the point of view of nonlin-

ear programming, beginning with the analytical structure of the first and second
derivatives associated with such problems and the relation of these derivatives

to implicit differentiation and equality constrained optimization. We also out-

line an error analysis of the analytical formulae and compare the results with
similar results for finite-difference estimates of derivatives. We then attend to

an investigation of the nature of the adjoint method and the adjoint equations

and their relation to directions of steepest descent. We illustrate the points dis-

cussed with an optimization problem in which the variables are the coefficients

in a differential operator.
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1 Introduction

This paper discusses the calculation of sensitivities, or derivatives, for optimiza-
tion problems governed by ODE, PDE, and other state equations. The context

for this discussion is the general nonlinear programming problem

minimize F(a) = f(a, u(a))

subject to CE(a, u(a)) ----0 (l)

C1(a, u(a)) >_o,

with the distinguishing feature that u(a) is the solution of some set of equations,

h(a, u(a)) = 0. (2)

For instance, (2) might represent the solution of the boundary-value problem

-(l(a(x)u'(x))' = q(x), x E [0, 1]
u(O)= u(1) = o (3)

where the coefficient K_(x) is given, say, by

_2

I_o(x) : _ ai¢i(x)
i=l

for some fixed set of functions ¢1, • " ", Cn.

While our discussion will focus on the ease where the equations defining

u are differential equations, other defining relations are possible. Problems of

the form (1)-{2} can appear in discrete event simulation. Another example is

the sensitivity of eigenvalues and eigenvectors. For instance, if A = A(a) is a

smooth, n × _ symmetric matrix-valued function of a, the system

Av- Av = 0

vTv -- 1 = 0

defines an eigenvalue-eigendirection pair u = (A, v). The pair (A, v) is a smooth
function of a when A is a simple eigenvalue, and one can apply the formulae we

discuss here to compute the related sensitivities.

The equation (2) typically describes the physical state of the problem. Ex-

amples of optimization problems governed by state relations abound in inverse

problems, parameter estimation, remote sensing, optimal design, and optimal

control. We will refer to the variable a as the model parameters and to u(a) as

the state associated with a. The governing equation (2) will be called the state
equation.

We will examine the calculation of the derivatives associated with the prob-

lena (1). We will henceforth ignore the constraints CE and CI in (1) and consider
the ostensibly unconstrained problem

minimize F(a) = f(a,u(a)) (4)



andstudythederivativesof F and u with respect, to the variable a, since the

derivatives of CE and Ci with respect to a are similar to those of F. This

simplification helps us focus on the salient feature of u(a): its nature as the

solution of (2).

Our discussion of the calculation of sensitivities is motivated primarily by

an interest in applying nonlinear programming algorithms to (1). The most

generally effective optimization algorithms for problems such as these are quasi-

Newton methods [8, ll], which require derivatives of the the objective function

F and the constraints. Sensitivities are also useful in their own right to study

the dependence of the state, objective, or constraints on the parameters a. As

we shall see, the governing equation (2) imparts a great deal of structure to the
calculation of derivatives.

The goal of this paper is to interpret the language that one encounters in the

literature on calculating sensitivities for differential equations in more familiar

terms, and, in particular, to show the connections to classical ideas in nonlinear

programming. Because we have in mind the optimization of systems governed
by differential equations, we will frame our discussion in the general terms of

functional analysis.

The main theme of this paper is the systematic approach to computing
derivatives based on implicit differentiation, and the significance of these deriva-

tives for optimization. Among the particular points we will discuss are the

following:

* A careful derivation of the general formulae for the first and second deriva-

tives of F, including the infinite-dimensional case.

• The connection between the formulae for derivatives and equality con-

strained optimization.

• A comparison of numerical error estimates for sensitivity calculations via
analytical formulae and by finite-differences.

* The distinction between the derivative and directions of steepest descent.

• The adjoint approach, and the sense in which the "adjoint equations" are
adjomt.

• Some potential difficulties with the adjoint approach in the context of

optimization algorithms; in particular, how it may correspond to a non-

standard choice of scaling for some problems.

This exposition is intended partly a.s a primer for those unfamiliar with this

type of sensitivity calculation, and partly to make it. easier for those whose

background lies in differential equations and those whose background lies in
nonlinear programming to discuss optimization problems of mutual interest.

The problem that is tacitly assumed as the model problem in this paper is

the case where _(a) is the solution of a differential equation and a represents



eitherdatain theproblem--boundaryvaluesandsourceterms--orcoefficients

in the differential operator. Such problems make up a large proportion of those

encountered in control and parameter estimation. One topic that we will not

discuss is shape optimization, in which the domain on which the state is defined

varies, since this topic requires a great deal of machinery unlike that developed
here. However, many shape optimization problems can be reduced to problems

where the domain of definition for u is fixed and the variation in the shape is

represented by the variation of some boundary term or coefficient., in which case

the approach discussed here applies. For examples, see [23].

We begin in §2 with the derivation of formulae for derivatives. The results in

this section are certainly not new, but the emphasis placed on the role of implicit

differentiation may be unfamiliar to some, and the presentation is detailed,

particularly the general derivation and interpretation of the reduced Hessian,

which relies on various technical identifications relegated to §11.

In §4 we present some error analysis for the calculation of sensitivities via

the analytical formulae and compare the results with similar results for finite-

difference estimates of derivatives. This comparison helps explain the often
noted experience that analytical derivatives can be much more accurate than

finite-difference approximations of sensitivities for systems governed by state

equations.

In §5, we discuss the relationship between the formulae for derivatives and

equality constrained optimization. Here we examine what is called the adjoint

state or costate in the differential equations and control literature and identify it

as a familiar Lagrange multiplier estimate in linear and nonlinear programming.

In §6 and §7 we discuss two approaches to sensitivity calculations. In prac-

tice, these approaches differ in the way in which they organize the intermediate
calculations. The first is the sensitivity equations approach, which yields direc-

tional derivatives. The second is the adjoint equations approach, which is an

attempt to represent the derivative in a particular form and obtain a direction

of steepest descent by inspection. Our discussion is based on the distinction
between the derivative, which is a linear functional and as such lives in the dual

of the domain on which the problem is posed, and directions of steepest descent,
which are vectors in the domain that depend on a choice of norm. In/R n linear

functionals are simply row vectors that may be transposed to obtain a direction

of steepest descent. However, in the infinite-dimensional case the situation is

more complicated. This we also discuss in §7, where we clari_; what is "adjoint"

about the adjoint equations in the context of optimization, and how the adjoint

equations are related to a choice of norm, or scaling, defining a direction of

steepest descent.

We illustrate the discussion with a parameter estimation problem for an

elliptic operator in §3 and §8. This example suffices to show how one computes

first and second derivatives and directions of steepest descent with respect to

different norms. This example also shows how one can go wrong by an uncritical
use of the adjoint equations when they correspond to an unsuitable scaling for



theproblem.

2 Formulae for the derivatives

We begin with the analytical formulae for derivatives for problems governed by
state equations. These derivatives of the state and objective will follow from

implicit differentiation. These formulae are derived in detail in order to be

precise about the exact nature of the quantities that appear in the infinite-
dimensional case, particularly in the expression for the derivative and Hessian

of the objective.

2.1 Notation

Given a Banach space X, we will denote its dual, the space of all bounded linear

functionals on X, by XL We will denote the duality pairing between T E X r

and v E X by Tv = (T, v/, or by (T, vlx if it is desirable to note the space

involved. If X is an inner product space, we will denote by (. , .) or (. , ")x the

inner product. Given two spaces X and Y, L(X, Y) will denote the space of
bounded linear maps from X to Y. We will denote by Ix the identity operator
on A-.

The adjoint of a bounded linear operator A : X -+ Y will be denoted by A x .

The adjoint A x : },1 _+ X _ is given by

( A×y'' _)x = (Y" A_),,, Y' e _".

If X and Y are both Hilbert spaces, we will identify A x with the Hilbert space

adjoint A" : Y -+ X, defined by

(x, A'y)x = (Ax, y)y

for allxEX andyEY.

Given a map G : X --+ Y, we will sometimes denote its first and second
derivatives at x by DG(x) and D2G(x). In the proof of Theorem 2.2 we will

need to distinguish between the dependence of the derivatives DG and D2G on

x and their action on vectors, which we will do by using brackets to delimit the

arguments of DG and D2G as linear and bilinear inaps: DG[v] = DG(x)[v] and

2.2 The implicit function theorem and implicit differenti-
ation

The classical implicit function theorem [14] will suffice for the calculation of

sensitivities in this paper:



THEOREM2.1(THEIMPLICITFUNCTIONTHEOREM). Let X, U, and V be

Banach spaces, and suppose h is a mapping from an open subset S of X × U

into V. Suppose (ao, no) is a point in S such that

1. h(ao, uo) = O,

2. h is continuously Fr¢chet differentiable at (a0, uo), and

3. the partial Fr¢chet derivative Oh/au(ao, uo) is boundedly invertible.

Then there exists a neighborhood E of ao such that for each a E E, the equation

h(a, u) = 0 is soh, able for u(a) E U. Moreover, the derivative of this solution

u(a) w_th respect to a is given by

du Oh -1 Oh

This formula for the Jacobian of u with respect to a is formally the result of
applying implicit differentiation to h(a, u(a)) = 0 to obtain

Oh Oh du
+ -0

Oa Ou da

and thence (5).

2.3 The reduced derivative and the reduced Hessian

We will now apply the Implicit Function Theorem to derive formulae for the

derivative and Hessian of the objective function F in (1). We will assume that

u(a) is a locally unique solution to

h(a,_(a)) = 0, (6)

where h : (a,u) E X × U --+ V, and that Oh/Ou is boundedly invertible. In

practice, the validity of these hypotheses typically follows from the existence

and uniqueness theory for the solution of the equation represented by (6). We
will also suppose that f and h are twice continuously Fr_chet differentiable on

a neighborhood of (a, u(a)).
Let

((li)W= W(a,u)= du = Oh -1 Oh . (7)

We will call W the injection operator since it is a one-to-one mapping from X

into X × U and is invertible on its range; in finite dimensions it is a full rank



matrix.Its adjointW x we will call the reduction operator. Observe that the

range of W lies in the nullspaee of the Jacobian of h:

Also define A E V' by

_=-_ N (9)

and the Lagrangian f(a, u; ),) by

t(a,u;A) -- f(a,u) + (A, h(a,u)> V .

The Lagrangian is normally associated with constrained optimization, a point
to which we will return in §5, where we will discuss the nature of A as a Lagrange

multiplier estimate known as the costate or adloint state.

THEOREM 2.2. The derivative of F with respect to a is given by

_F'(a)
Oa Ou -_u _ (_,_(a))', (10)

which may also be written as

F'(a) = D(_._)f W (_.u(_l) = D(_,u)g(a, u;)_) W (a,_,(a))' (11)

where A = A(a, u(a)). The Hessian of F is given by

2"_F(a) = W × (V_a,u)C((a,u(a);A)) W (a.u(a))' (12)

where

V__,.)(((a,u;A)=Vra,u)f(a,u)+ /k, Dca,u)h(a,u ) v"

/
"_ I \ ")The term_\A'D_'_,o_,/,...__arrant.sexplanation.Si,ce _ V"D_a,u)h(a, u)[vl, v2]

for vl, v2 E X × U, we have a real-valued bilinear form defined by

In the finite-dimensional case, h = (ha,..., hm) T and we have the more recog-

nizable quantity

i----1



Theorem 2.2 reduces to familiar results from nonlinear programming in the

finite-dimensional case. Assuming vectors in L_ '_ to be column vectors, formula

(10) in Theorem 2.2 is an expression for a row" vector (a linear functional on
/Rn ). We transpose to obtain the gradient,:

_F = wT_:(a,_)C

The objective F(a) = f(a, u(a)) is called the _educed objective; we obtain the
gradient YTaF of the reduced objective by applying the reduction matrix W T to

xT(a,,)f. This is an instance of the reduced gradient in nonlinear programming

[11]. For this reason we will call dF/da the reduced derivative. Similarly, the
expression (12) corresponds to the reduced Hessian:

v2or: wT%# I¥

The reduced gradient and the reduced Hessian and the origin of the terminology

"reduced" will be discussed further in §5.

The proof of Theorem 2.2 is a straightforward calculation based on implicit

differentiation. The one subtlety is the interpretation of some of the quantities

encountered along the way in order to arrive at (12), which looks like the familiar
formula for the reduced Hessian. For instance, _2F = I.V× V2( _ I<l' means that

du
for all _1, _2 E X. The identification of this latter formula with (12) requires

the results in §11.

Proof. Computing the derivative of F, we see that

dF (a) = Of (a u(a)) Of (a eu
-jg ' + 'u(a))da(a)"

From this and the Implicit Function Theorem we obtain the following expression
for the derivative of F:

dF (a c3f (a Of (a,)= _ ,u(a))- _u u(a))(_u(a,u(a))) -I cob

which is (10). This can be rewritten as

(--)(a) = D(,,_)I W = -_a' _ W;

this and (8) yield (11).
We now' turn our attention to the Hessian. We have

d2F_ d [fa(a,u(a)) _du]da'- da + f_(a,u(a)) ,



in thesensethat forall .1,q2 E X,

d2F 02f r . Ofa rdu
da 2 (a)[,l, ,2] = __a._Lql, ,2J + "_u l_aa,i, ,2]

_a du (92f .du du . d2u+ [.i, _aa._] + 0---_u__[Taavl, _aa.2J + I_ d-_a2[.1, .;1,

where the partial derivatives on the right-hand side are evaluated at (a, u(a)).

Here we are using the identification of Hessians and bilinear maps in §11.2.

Using the interpretation of adjoints and bilinear forms in (54) in §11.4, we can
rewrite this as

da 2 = da / c_"f 02f du COuda2

OaOu Ou_

( ) cgfd2u (13)= W × V_a,u)/ W + c3---uda-''_-

Meanwhile, implicit differentiation of

ha(a, u(a) ) + hu(a, u(a) ) _aa (a) = 0

for all .1, _12E X, so

Of d2u.
0_, _ [.1,72]

= "_ k 002 [7I, '_2] "J- -_-[_aa.1,72]-}- _a ['11, tl2] + _-'__-tl.2[_--a.1, _a-a .2]

= (,_, D_a.u)h}l. [[/V,I,['V_2] •

Since the right-hand side is a real-valued bilinear map, we may again apply (54)

in §11.4 to rewrite this as

Combining (13) and (14) yields (12). [3

yields

d2u

_-a_O(_)[._,,r_,]=

- _-j2 [_, "_]+ r_]+ _._] + [_._,



3 Example

We will apply Theorem 2.2 to compute the derivative for a least-squares func-

tional associated with the following boundary value problem (BVP):

--_? "(a_)'u) .-}-biO:_,u = q in
u = 0 on 0_. (15)

We assume _ is smoothly bounded. We use the summation convention through-

out; if an index occurs twice in a quantity then summation over that index is
r_

implied: biO_.,u = _i=I b_O:cu. For simplicity, we will assume that a = a(x) is
a scalar function. We will assume, too, that bi, q E L _. Existence, uniqueness,

and regularity of solutions of this problem are discussed in [10, 17].

For simplicity, we have chosen a problem for which the state equation is

linear in the state and the boundary values are homogeneous. We will consider

the following nonlinear least-squares functional:

_[dx (u(x) - u.O:)):minimize F(a) = _
J_

where u. E L _. For instance, this objective might represent a parameter es-

timation problem, in which case the data u. would represent observations the

mismatch with which we wish to minimize. For a further discussion of the pa-

rameter estimation problem, see [3, 15, 26] and the references therein. This

functional could also arise in inverse design, where u. would represent some
desired state that we are attempting to achieve by varying a. Our goal here is

only to study how one computes derivatives, and we will ignore the question of

the existence of solutions to the minimization problem.

We will consider weak solutions to (15). For now we will let X = L¢¢(_),

though later we also consider the case where X = C k,o, the space ofC k functions
with HSlder continuous derivatives of order c_. A suitable domain for a is

S={aEX I a>_a. >0 }

for some positive a. E/R. The state u resides in U = H l(Vt).

The weak interpretation of the BVP (15) means that the state constraint h

is a map

h: (a,u) E S x U-_ h(a,u) E V = (H_(l-_))'

where for v E H_ (_),

(h,a,z,), V)Hg = j dx aVu.27v+ /dx (b_O,,u)v- /dx qv. (16)

The relation that defines u as a function of a is h(a, u(a)) = 0 in (H0a(_)) '.



We begin by computing the various quantities needed to apply Theorem 2.2.
Since h is an affine function in u, it is Fr_chet differentiable with respect, to u.

Computing
Oh h(a, u + tv) - h(a, u)
--u = lim
0u t-_.o t

we find that
Oh
--u = -V. (aVu) + biO_,u (17)
Ou

in (H01(ft)) ', in the sense that

<Oh ) =_ dxaVuVv+_dx(biO''u)v-_uu'v H_

In a similar way we obtain

Oh
_-_ar/= -V. (r/V'u). (18)

Again, this equality is to be interpreted in the weak sense, as elements of

(H0_(_))'.
Both (17) and (18) are expressions for a Jacobian-vector product--a direc-

tional derivative--rather than an explicit formula for the Jacobian. Directional

derivatives such as these are straightforward to compute.

Following the program in §2, we wish to apply implicit differentiation. First

we check that Oh/Ou is boundedly invertible, that is, that for all • E (H_(f_))',

there exists a weak solution u E H_ (_) of the linearized boundary-value problem

Oh
--u = -V . (aVu) + biOr,u = _I, in D
Ou

u = 0 on OD,

and that the solution operator is bounded: there exists C. independent of q_,
for which

II_ lille(a)-<c II_' I1(.o_(_))'•

In this case, the bounded invertibility of Oh/Ou follows from the existence theory

for elliptic equations in divergence form [10, 25].

Thus we may apply the Implicit Function Theorem to conclude that the

action of du/da--the dacobian of u with respect to a--on a vector 7/is given by
the solution of the linearized BVP

Lu = -V . (aVu) + biOr,u = _" • (rl_'u) in Q
u = 0 on 0Q. (19)

This corresponds to

Oh Oh Oh - 1 Oh du

10



in the notation of §2.

We now arrive at the action of the derivative F'(a) on rI. Let

du

v= _.a q;

v is defined by (19}. We also have

Of O, Of /_Oa-"= -_-_uv= dx (u - u,)v.

Then by (10), we have

F'(a)T I = _dx (u - u,)v.

This yields the action of F'(a) as a linear functional.

(20)

4 Analytical vs. finite-difference approximation
of sensitivities

In this section we will draw some comparisons between the numerical accuracy
of the analytical derivatives of §2 and that of finite-difference estimates. We will

consider the case where the state equation is linear in u:

h(a, u) = A(a)u- b = O.

Given a = (al..-.,a,), we compute the matrix A(a) and solve the system
Au = b for u(a). For instance, such a linear system would arise in the solution

of a boundary-value problem such as (3) or (15). As we shall see, the error

estimates are guided by the fact that small changes in a will generally cause
only small changes in A, but, if the system is ill-conditioned, may cause much

larger changes in u.

Let's see what might happen if we apply finite-differences to compute the

partial derivative

which is the i th column of the Jacobian of u with respect, to a.

We will need the following basic estimate concerning the sensitivity of the

solution of linear systems to changes in the data, adapted from [13]. Let n(A)
denote the condition number of ,4.

THEOREM 4.1. Suppose A E 1R'_xn is nonsingular, b E IR", Ax = b, and

suppose (A + AA)y = b + Ab, where ]] A -1 1]II AA [1 < 1. Then

,,:_-vll < 1 (]]A-I [ll'_bl, A__ )II_ II - 1 -II A-_ I[IIAA I[ IIz II + II ]l I1AA II . (21)

11



Moreo¢,_. if II AA [] < s II A II and I1 Ab [[ _< _ II b [I, the,_e are perturbations for
whwh thts bound is achieved to .first order in _.

Of course, this bound is quite pessimistic for most perturbations. For in-

stance, a small perturbation of the form AA = aA is benign, and its effect does
not involve tz(A). On the other hand, there are perturbations for which these

bounds are nearly obtained, which is of significance to us. Moreover, if A has

a certain sparsity pattern--say, if A were associated with a finite-difference or

finite-element scheme--the perturbations AA that produce this sensitivity can

have the same sparsity pattern as A.
Let ei be the i th standard basis vector. We will assume that ai _, 1, and

consider the effect, of a finite-difference step t _ 7a.i, where t reflects the absolute

size of the step and 7- the relative size. We will use p to denote machine epsilon,

the smallest floating-point number for which 1.0 + p = 1.0 (ill floating-point).

Let. u.(a) be the solution to the linear system A(a)u = b computed in exact

arithmetic, while u(a) will be the computed solution. Let e(a) = u(a) - u.(a)

be the associated error in the solution; we will assume that u is computed

as accurately as possible, so that II_(-)II = O(_¢(A)p). We will assume that.

u(A)p << 1 so we can ignore the issue of numerical singularity.

As we saw in (5), the exact partial derivative u'.(a) is the solution of

0,4,
A.(a)u'.(a)- Oa,, (a)u.(a), (22)

where the subscript %' on the matrices denotes their representation in exact
arithmetic. The computed partial derivative u'(a) is the solution of

OA

A(a)_'(_) = - _(_), (23)

where the matrices are the floating-point representations of the exact lnatrices.

Comparing (22) and (23), we expect II AA II = II A(a) - A.(a) II - P tl A.(a)I1,
while the change in the right-hand side is

from which we obtain

0A. O,4.

I1,_XbII < _' _ II"-(") I1+ _ II_.(a) - u(a)It

OA.

< p(l + t¢(A)) _ [1 u.(a) ll-

We will now make the assumption that.

,,.(_) _- _ It_,.(.)II (24)

12



wherehere_ meansequivalenceupto afactorthat issmallbycomparisonto
_(A). Underthishypothesis,combiningtheprecedingestimatesaccordingto
(21)weseethatcomputingu' via the analytical formula satisfies a relative error
estimate of the form

II <(a) - ,'(a) II = O(tc_.(A)tz). (2.5)
II _'(a)II

This suggests that computing u' via the analytical formula is comparable in

condition to solving least-squares problems. The factor K2(A) is not entirely

unexpected, since the calculation of u' involves the solution of two linear sys-
tems. one for u and then another for u'.

Next consider the finite-difference approximation and its two sources of error:

truncation error, due to the nonlinearity of the function being differentiated, and

condition error, due to inaccuracies in computing the function [11, 20]:

= ,(a) +
t t

= truncation error + condition error.

These are the ScylLa and Charybdis of finite-difference approximations, since
reducing one error tends to increase the other.

Under our hypotheses, the relative error due to condition error satisfies

fl_-(a+tei)-e(a)ll _ Ile(a)[I < x(A)pll,_.(a)ll._ _¢(A)#[IA[I/ OA.
t ll ,,:(a) II t ll u:(a) II - t ll ,,'.(a) II ---7 "

In practice, condition error is exacerbated by the use of iterative solvers in the

solution of tile state equations, among other things. In particular, the stopping

criteria for iterative methods increases the condition error: consider solving a
discretized differential equation, where u would represent a discretized function.

The iterative approximation of u might be abandoned when the error in the

computed solution is believed to be comparable to the error inherent in the

level of the discretization [21], rather then when the relative residual of the

system being solved has been reduced to the order of floating-point precision,

thus increasing the condition error. However, here we will restrict our attention

to the errors solely attributable to the conditioning of the state equations.

Now consider the truncation error. In practice, analytical nonlinearity in u
may be amplified by numerical nonlinearity. For instance, numerical methods for

the solution of differential equations that contain switches such as upwinding will

contribute to the nonlinearity of the dependence of u on a. If we were applying

finite-differences to estimating OF/Oai in (1) and avoiding the intermediate

state u, then we might also have to contend with adaptive meshing methods
that could change the state space as a function of a, another contribution to

truncation error. Again, we will restrict ourselves here to the effects of the

condition of the state equations.

13



Wehave
A.(a +tei) - A.(a) OA.

= -_Z(_I + E.t

We may expect E to be small relative to A(a) if :4 depends in a straightfor-

ward manner on a. For instance, for the example (3), the discretized operator
constructed for a finite-difference or finite-element scheme would be a relatively

simple algebraic function of the coefficient parameters a. For convenience, define

., u,(a + _ci) - u.(a)
u.(a) --

1

Then

- \ Oai + E u.(a + re,). (26)

Meanwhile, consider _A -- A, (a+tei)-A, (a); we expect II AA II _ r II A,(aj II,
and the estimate (21) yields

- T_(A.(a))II_,(_ + t_) _-(_) II< (27)
Hu-(a)[] - 1-rK(A,)

Comparing (22) and (26) using the perturbation estimates (21) and (27), we
obtain

[I ft' (a) - u'.(a) [I = O(_2(A.(a))T).

Combining the bounds on the condition and truncation errors, we obtain a

bound of the following form on the relative error in the finite-difference estimate:

I ,l(a 4- 'el)- l,(a) _ ut(a) I /n ?_t:(_)I] < cIK2(A(_/)) T'{- c21"_(A(a))ll

I _' ] -- 7"

Minimizing this in 7" gives a bound that is O(n3/2(A)pl/2). In view of our

hypothesis g(A)p (( 1, this bound is much more pessimistic than tim O(g_-(A)p)

bound on the analytical derivative, itself no great shakes.

This analysis suggests finite-difference approximations of derivatives associ-
ated with state equations are potentially much more sensitive to ill-conditioning

of the state equations than are derivatives calculated using the analytical for-

mulae. Whether or not one sees these pathologies depends on the condition of

the system being solved and the the perturbations of that system caused by

changes in the design variables a. And. as we have noted, the analysis sketched

here also ignores other sources of error that one encounters in practice that can
have an even more pronounced effect..

While in practice one can generally use finite-differences successfully, there

remains the possibility for serious and unavoidable errors. One can construct

algorithms for unconstrained optimization problems using inexact gradients

[5, 22], but. errors in the gradient can retard progress. Inaccurate derivatives are
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alsoa problemfor sensitivityanalysisin design(i.e.,approximatingthelocal
behaviorofafunctionaboutanominaldesignusingafirst-orderTaylor'sseries
model).Thepotentialforunpredictablyinaccuratefinite-differenceapproxima-
tionsof sensitivitiesisonemotivationforexamininganalyticaltechniquesfor
computingderivatives.

5 Relationship of the sensitivity calculations to

equality constrained optimization

In §2.3 the Lagrangian

c(a, _; _) = f(a, ,,) + (_, h(a, u))

was introduced with the multiplier ), E V' defined by

_=-N _ (28)

The motivation for introducing the Lagrangian comes from viewing the problem

(4) as an equivalent equality constrained problem:

minimize f (a, u) (29)
subject to h(a,u) = O,

where now both a and u are independent variables. From this point of view

the costate A serves as a Lagrange multiplier estimate [11, 24]. The assumption

that Oh/Ou is boundedly invert.ible allows us to invoke the Karush-Kuhn-Tucker
necessary conditions for a feasible point (a,, u,) to be a solution of (29) [7]: there

exists A, E I" for which

D(a,_,)f(a., u.; A.) = D(a,,,)f(a., u.) + (A., D(_,,)h(a., u,) ) = O.

In particular, the u-component of this system is

Of (a., u.) + A. OhOu-- -g-u(a., u.) = O.

From this and the definition of the eostate (28) we see that _ is an estimate of

the Lagrange multiplier associated with (29) that is consistent with the first-
order conditions at a locally constrained minimizer: i.e., A = I, at a minimizer.

A further discussion of the topic of multiplier estimates can be found in [I 1, 24].

The costate )_ corresponds to two common multiplier estimates in linear

and nonlinear programming, the shadow costs or reduced costs in the simplex

method [6] and the variable reduction multiplier estimate in nonlinear program-
ming [11]. To see this correspondence, first, consider the Jacobian of the state
constraints in the finite-dimensional case:

(0h 0h)N' _---(X, B).
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Weareassumingthat B = Oh/Ou is boundedly invertible, so we may take the

corresponding variables, the state variables u, as the basic variables (so-called
because the columns of B form a basis) and the model parameters a as the

nonbasic variables. Then AT = B-T_uf.
Now consider an iteration of the simplex method for the linear programming

problem
minimize cT x

subject to Ax = b

One determines the components xu of x for which the inequality constraints

are binding, and forms an invertible block B from the columns of A correspond-

ing to the remaining components xB, and a vector cB from the corresponding
components of c. The shadow costs _ are then defined to be 7r = --B-TcB,

corresponding to the costate )_.
In the case of nonlinear equality constrained programming,

minimize f(x)

subject to h(x) = 0,

the variable reduction multiplier estimate at x is computed by first finding an
invertible block of columns B of the Jacobian of h. The multiplier estimate is

then n = B-T'_'Bf(x), where _'Bf(x) are the corresponding components of the

gradient, and again we see the correspondence with ,k.
The basic/nonbasic partition comes about by viewing the basic variables as

functions of the nonbasic variables. This reduces the problem to one in the
nonbasic variables alone: hence "variable reduction," "reduced gradient," and

"reduced Hessian." In the case of state constraints, we can treat the state u as

a function of a in (29) and eliminate u as an independent variable to obtain (4).

The costate multiplier is derived from a fixed partition of the variables in which
the state variables are always the basic variables and the model parameters a

are always the nonbasic variables. This is unlike the general case of linear and

nonlinear progranaming, in which the basic and nonbasic partition tends to vary.

In the nonlinear programming literature, this relation between equality con-

strained optimization and systems governed by state relations goes back at least

to [1] and work cited there, where it is discussed in the context of the general-
ized reduced gradients algorithm. Further consequences of the basic/nonbasic

partition of the state and model variables can be found in [18].

6 Sensitivity equations vs. adjoint equations

The order of calculation in (5) and (10), which we followed in §3, corresponds

to the approach to computing derivatives known as the .sensitivity equations,
as well as computing sensitivities via finite-differences or the forward mode of
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automaticdifferentiation[4]. The sensitivity equations approach is equivalent
to computing directional derivatives, and for this reason it is most applicable

when there is a small number of design parameters a.

Tile following example makes the idea clear. We modify our example (15),

-T.(NagZu)+biO.r,u=q in f_
u = 0 on Of2,

so that the coefficient, in the leading term is parameterized as a function of a

set. of model parameters a = (ai):

rl

Ko = _ ai¢i
i----I

for some (small) set of basis functions {01,"', Cn}.

Formally. the sensitivity equations are derived by applying O/Oai to the

governing state equations and interchanging the order of differentiation to obtain

a relation defining Ou/Oai:

Olia Ou
(Vu) ---) b-T. Oai -V.(ICaVOa i + iO_,_a/=0 inf2

Ou
-- = 0 on Off
Oai

(30)

In terms of the discussion in §§2-3, this is nothing other than implicit differen-
tiation of h(a, u(a)) = 0 to obtain

Oh Oh Ou

Oa--_+ Ou Oai - O.

The sensitivity equations yield Ou/Oai. If we wish to compute OF/Oai for some

functional F(a) = f(a, u(a)), we would use Ou/Oai and the chain rule.

The sensitivity equations approach is attractive when one has a large number
of outputs but only a relatively small number of inputs. Suppose we wish to

compute sensitivities not just for a scalar output F, such as the objective in

(1), but a vector-valued function C(a) = c(a,u(a)), where c :/R '_ x/R m --+/R q,
such as the constraints in (1). The Jacobian of C is given by

d(' Oc Oc du Oc Oc {Oh'_ -1 Oh
f|+ (31)

da Oa Ou da Oa _u. \-_u } -_a
f

qxm rnxrn mxn

In the sensitivity equations approach, we tacitly compute du/da as an interme-
diate quantity, which requires n solutions of the sensitivity equation, no matter
the number of state variables u or outputs C. We compute an entire column of

the Jacobian of C each time we solve the sensitivity equations.
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Ontheotherhand.if onehasa relativelylargenumberof inputs,thesen-
sitivityequationsmaynot bepractical,sinceeverypartialderivativerequires
thesolutionofthesensitivityequations(i.e.,thelinearizedstateequation(30)).
Thismotivatestheadjomt approach.

Transpose (31 ):

Oh T/Ol_\ - T

"-'_-- _m xq

where VC denotes the transpose of the Jacobian. Then we see that this trans-

posed sequence of operations requires q solutions of the transposed linearized
state equations (q applications of (Oh/Ou)-T). If q << n, this will be preferable

to the expense of the sensitivity equations approach. This ordering of operations

is the gist of the adjoint approach and the reverse mode of automatic differen-

tiation. In the case of/R _, the adjoint corresponds to the matrix transpose.

For an optimization problem, the adjoint equations approach--ordering the

calculation of derivatives as in (32)--is very attractive because one obtains the
gradient of the objective F. disirregardless of the number of model parameters

a. via a single application of the transposed solution operator (Oh/Ou) -T. More

generally, tile effort required to compute sensitivities (say, of constraints) via
the adjoint approach grows with the number of outputs rather than with the

number of inputs.

The adjoint approach requires us to solve linear systems involving (Oh/Ou) -T.

If we have Oh/Du at hand as a factored matrix this is not all that difficult.. How-

ever. Oh/Ou might not. be readily available, say, if h(a. u(a)) = 0 is solved via

a nonlinear fixed-point iteration, or only the action of Oh/Ou is available be-

cause systems involving it are solved using an iterative scheme• In either case,
implementing (Oh/Ou) -T will require a fair bit of effort, on the part of the user.

In the finite-dimensional case the sensitivity equations and the adjoint ap-

proach are simply two different ways of computing a product of matrices. De-

pending on the relative dimensions of the matrices, one or the other method

will be the more attractive. However, in the infinite-dimensional cas< the situ-

ation is more subtle. The complication arises in the switch from row vectors to

column vectors in the adjoint approach, i.e., the transposition of (31) to obtain

(32), the significance of which we will now discuss in greater detail.

7 The representation of derivatives and the ad-

joint approach

We have seen that, the attraction of the a.djoint approach in finite-dimensional
optimization is that one obtains the gradient, of the objective for the cost of

solving a single linear s3;st,em. Abstractly, the derivative F' is a linear functional
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on]]_n while the gradient--the direction of steepest ascent--is a direction in

/R '*. We can pass between the two because of the identification of/R n and its

dual, which does not necessarily generalize to the infinite-dimensional case. The
derivative of F described in Theorem 2.2 resides in the dual X', and we cannot

necessarily identify X' with X. We can connect the two spaces through the

notion of a descent direction--a direction p E X for which F'(a)p < 0. At the

very least, such a direction is needed in order to apply a quasi-Newton method.

This leads us to a discussion of directions of steepest descent, the representation
of linear functionals, and the adjoint equations.

7.1 Directions of steepest descent and the action of the

Hessian

First recall the definition of a direction of steepest descent [12]. Suppose X is

a normed linear space with norm II" IIx, and suppose F : X _ //_ is Fr6chet
differentiable at a with Fr6chet derivative F'(a) E X'. Then the direction of

steepest descent with respect to the norm I1 " IIx is a solution of the problem

minimize (F'(a), p) (33)
subject to ][p[lx_< 1,

provided that a solution to this minimization problem exists. In the case of a

reflexive Banach space, we are guaranteed at least, one solution to (33) because

the unit ball B will be weakly sequentially compact [27]. Given any sequence

{Pk}, I[ Pk [I -< 1, for which

lim (F'(a), pk} = L = inf (F'(a), p),
k--*_ IIv I1_<1

the weak sequential compactness means that we can find a subsequence con-

verging to a point p. for which (F'(a), p.) = L.

Note that the direction of steepest descent depends on choice of norm--the

direction of steepest, descent, indicates the direction of greatest decrease in F

per unit distance, and the distance depends on the norm. The derivative is a
linear functional independent of choice of norm; the direction of steepest descent

depends on what. one means by "steepest". A short step in the L _ norm may

not be a short step in the H 1 norm, for instance, since an oscillatory function

may have a small L 2 norm but a very large H 1 norm. This aspect of the choice

of norm has practical bearing on the behavior of optimization algorithms. The

choice of norm--the scaling--can have a profound impact on the efficiency of

optimization algorithms [8, 11].

A similar concern arises in interpreting the action of the Hessian H = V-_F.

The Hessian is an element of the space L(X,X') (§11.2); accordingly, the

Hessian-vector product Hp is an element of X', and again we ask how this
linear functional can be related to directions in X. As with the direction of
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steepest, descent,, a natural problem to pose in order to represent the Hessian-

vector product Hp as an element of X is:

minimize (Hp, q)
q_X (34)

subject to LIq H-<1.

In the case of a Hilbert space, we have X' _ X and L(X,X') _, L(X,X), so

there is an immediate interpretation of Hp as an element of X. In this case,

the solution q of (34) will point in the direction of -Hp.

The conjugate gradient algorithm illustrates the preceding discussion. Con-

sider the minimization of the quadratic form

q(_:) = _xT Ax - xTb,

where A E /R" x,_ is symmetric positive definite. Following [9], we can summa-

rize the conjugate gradient algorithm as follows:

z0 = 0,/_0 = b.k = 1

while rk-1 :/: 0 {

get dk such that T-dk rk-1 ¢ 0

xk = argmin q(x)
xEspan _pl ,'",Pk- l ,dk }

Pk ---- Xk -- Xk--1

rk TM i;k-I -- Apk

k=k+l

}.

Ill the un-preconditioned conjugate gradient algorithm, at. iteration k we min-

imize q over the span of the preceding search directions and the direction
dk = rk-1 -- b - Axk-1 = --Vq(zk), corresponding to the usual direction of

steepest, descent with respect to the 22 Euclidean norm. On the other hand, if

we choose dk = 3I-lrk-1 for a symmetric positive definite 2il, we obtain the

preconditioned conjugate gradient, algorithm. However, note that M -1 rk-1 lies

along the direction of steepest descent, with respect to the norm induced by

the inner product (x, Y)M = xTMy. Thus, computing a direction of steepest

descent with respect to an inner product, other than the usual Euclidean inner

product leads to the preconditioned conjugate algorithm.
The connection between elements of the dual and directions in the domain

given by (33) and (34) also allows us to give a sensible interpretation of the

following aspect of the conjugate gradient algorithm. Suppose that A comes
from a finite-difference discretization of

-V. (aVu) = q on f_ (35)
u = 0 on 0fL

20



Tile matrix A : /R" -+ /R" approximates an infinite-dimensional operator .4

that is a map A : g_ --+ L" or ,4: H_ + (H1) '. In the finite-dimensional case,

we look for xk in span{p:,''',pk-l,dk}, where dk = b-Axk. But this does not

make sense m terms of the underlying infinite-dimensional problem: dk lies in
what should correspond to the range of .4, and the range and domain of .,4 are

not the same in this case. We can resolve this apparent inconsistency if we view

dk as the solution of a steepest descent problem (33).

7.2 The adjoint approach

The adjoint approach is an approach to computing a direction of steepest de-

scent.. The point, of view that. we present here is that the adjoint approach is

a no-holds-barred attempt to express the action of the derivative F'(a) in the

following form: For some function g = g(a),

P) = f gP. (36)<F'(a),

The goal of the adjoint approach is to find such a representation, if it exists.

One reason such a representation of the derivative is convenient is that it

suggests a direction of steepest descent and a choice of norm (scaling). If, for

instance, g(a) E X and X C L 2, then g(a) determines the direction of steepest.

descent in X with respect to the L 2 norm: the Cauchy-Schwarz inequality says
that the solution of

minimize / gPp_x (37)
subject to IIPIIL 2 -< 1

is -g/II g III_:" More importantly, as we will see in §8, a representation of the

derivative in the form (36) makes it possible to compute the direction of steepest
descent with respect to choices of norm other than the L 2 norm.

Having described the goal of the adjoint approach, we will now give an

abstract description of its nature and then pass along to a concrete example.
At this point the adjoint equations make their appearance, and we can clarify

what is "adjoint" about them.

We start with (10) and play some notational tricks. Given q E X,

(ol oleo,)F'(a)r] = _a + Ou da] rl

X X

Since

d,, (0_, _-' Oh
d--g= - 0G-'
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we have

dt/X 0f--dR GqU 0h x (0h) -x0,0R N 0--_" (38)

The adjoint equation, represented by OhX/Ou, has now appeared. It. is the

adjoint of the linearized state relation--adjoint in the sense described in §2.1--
1

and as such always exists.

The solution operator for the adjoint problem is a map

c3h-X Of U, (Oh)-× Of V, '

SO

ohx(oh)xol,, ohx(oh)-xo,o_ : _ N E _-N _ N _x'

This yields the infinite-dimensional analog of (.32):

F'(_)_= N l-N N N' _ " (39)
X

One hopes that when the dust clears, F'(a) has been revealed in the form (36).

The adjoint approach also leads to an alternative expression for the costate

A. From (9), a E V' satisfies

(o,)AN'" v =- N'" _"

for all t, E U. However,

/ a oh .
\ Ou'" a, u ,u Ou v N )'' c

or

/,o/a=-N N

allowing us to rewrite (39) as

f'(a)q= _aa 1+_ a, r/ . (41)
X

Also note that the adjoint equations can tell us how to compute an action

of the Hessian of F on vectors. If we can identify p E X with elements of X r

through a duality pairing such as (36), and if for all p E X we can identi_'

du x OhX(c3h) -×d--gP- 0R N P'

which is in X', as an element of X. then the adjoint equations tell us how to

compute W × according to (7). and the action of the Hessian of F via (12).
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8 An illustration of the adjoint approach

We will illustrate the adjoint approach using the example introduced in §3. We

begin by computing the adjoint equation and the other adjoint operators that

appear in (39). We then use these results to compute directions of steepest
descent and the action of the Hessian.

8.1 The adjoint equation and other adjoint operators

Recall that Oh/Ou maps v E H0_ to tlie linear functional in (H0_) ' defined by

Lv = -V • (aVv) + biO.r,v in f2
v = 0 on 0f2; (42)

that is, (Oh/Ou)v E (Ha)' is defined by

for all u: G Ha.

The adjoint (Oh/Ou) × maps w G (HH)" _ Hot to the linear functional in
(Hot)' defined by

L×w = -V. (aVw)-0,, (biw) in D
w = 0 on 0D. (43)

To see this adjointness, note that the definition of the adjoint and the reflexive
identification of (H a)'' and H H means that

w, v =- w, --v - =(Lv, W>H_
H Zo O U ( H lo ) ' -_-_ l _ , W

Meanwhile. the standard weak interpretation of (43) means that for all w, v E

H01,
/*

<L w, v)H_° = jadx aVw. Vv + wbiO_.,v = (Lv, W>H_ .
×

Thus (43) defines (Oh/Ou) x

The operator (Oh/Ou) -x is the solution operator for the boundary value

problem (43). Since (Oh/Ou) -1 is a map (Hot)' --+ H a, its adjoint (Oh/Ou) -x is

a map (Hot)'--+ (HH)" _ H H, which is again consistent with the interpretation

of (43) as representing the weak formulation of a PDE.

We also need to compute (Oh/Oa) x as part of the adjoint calculation (39).
For r/E L _ we have

Oh

_ = -v. (_v,,) _ (H_)',
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ill tile sensethatfor r E H01 we have

Ho

We have Vu- Vv E (L_)'; then from

0b

we see that

=/ndx rlVu , Ve.

= (Vu.Vv, _)t_,

Oh x
-- v = "_Tu . _v.

Oa

Using (43) and (44) we can now compute

du x OhX(Oh) -×d3 _'=-N N _

We first compute tile solution w of

L ×w =_ -V . (aVw) - O_, (biw) = V
H:_O

(44)

in Q
on Oft (45)

to obtain u, = (Oh/Ou) -x v, and then

Oh ×

Oct
W : --_tl Vw (46)

yields (du/da) × t,.
All these calculations and identifications (rather tediously) work with ad-

joints in the sense of the definition in §2.1. This sense of adjointness is not that
of an inner product space adjoint: the adjointness discussed for this example is

certainly not. that of a Hilbert space adjoint, for instance. One could attempt
to interpret adjointness in this example in terms of the L 2 inner product, but.

such an interpretation would lead one to unbounded operators on L 2 and signifi-

cant. theoretical complications. The "adjoint" of the adjoint equations should be

taken to refer to the adjoint that maps between dual spaces, just as in the theory

of weak solutions of differential equations. Thus one avoids unbounded oper-

ators. For observations on very similar difficulties with adjoints of unbounded

operators to the solution of boundary value problems, see [16].

8.2 Directions of steepest descent

For

F(a) = f(a,u(a)) = _ f_ dx (u- u.)'-',
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wehave

cOf o, 0f /nc3---a= -_u v = dx (u - u.)u. (47)

Keep in mind that cOf/au = (u - u.) as a linear functional in the sense of (47)

From (40), (43), and (47), the costate A E (HI) '' _ H_ is the weak solution
of

L×A = -_7-(a_TA) - 0_, (biA) = -(u - u,) in f2
A = 0 on c0fl. (48)

The regularity of solutions for the BVP means that we may think of A a.s an ele-

ment. of H_(S2), but. its nature as a Lagrange multiplier in (H_ (ft))" is described
via the canonical duality pairing

<;,, ¢)(.o_), : (¢, ._),%,, ¢ e (Hi)'

that makes H_ isomorphic to (HI) n. Here again we encounter the issue of

representations of linear functionals.

From (41),

/ 8h '< >F' ( a )q = (_-_a A, r1 .
L _

Applying (44), we see that if we define

g(x) = XTA(x). V'u(x) (49)

then we arrive at the representation of F_(a) as

f dx g,7 (50)F'(a)71

This integral representation achieves our first goal in the adjoint approach. This

representation will allow us to compute the direction of steepest, descent for a
variety of norms, as we will now discuss.

At this point the choice of domain X enters our deliberations. Suppose,

as we have heretofore, that a C X = Lc_(Q), and bi,q E L _°. Then we are

guaranteed in genera] only that u,A E H_, and so we can only be assured
that the representer g defined in (49) is in L 1. Thus -g does not immediately

determine an L 2 direction of steepest descent, because we do not know that g

is, in fact, in L "_. Without further hypotheses, we cannot simply take the result

of applying the adjoint approach as a direction of steepest descent.

However, given that, g E L 1 , we can compute the direction of steepest descent
in the L °¢ norm; it is

p(x) = -sign g(x).

Unfortunately. this is not a particularly meaningful direction of steepest, descent.

and in the computational setting this is not particularly well-scaled. In/R', the
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unit ball in the (_ norm contains points with (2 norm v/_, so the two norms

are quite dissimilar for large n.
One of the problems one can encounter with the adjoint approach has emerged.

Even if we can express the derivative in the form (36), the direction of steepest

descent, suggested by this representation may not. be acceptable because of the

regularity properties of the representer g.
What happens if we try to improve the regularity of 9 by restricting attention

to coefficients a that. are smoother than just L_? Well, if a E X = C_(_) and

bi, q E L _. then tt E Cl'_(_), and A E H0I, and so g E L 2. In this case,

P = -g/t] g IlL_- would be the direction of steepest descent with respect, to the
L 2 norm. However, unless )_ E C1'_(_), the direction p may suffer from the flaw

that p _ X = C&(Ft).
It can happen that. )_ $ CI'"(_) because the regularity of solutions of the

adjoint problem (43) is slightly different, from those of the state equation or it.s
linearization, a situation not uncommon in the adjoint approach. In order to

guarantee A E C I'_. we must require not only the hypothesis a E C _ but. also
bi E C °. This is because the differential operator associated with tile adjoint

contains the weak derivatives 0._, (biw), terms absent from the operator Oh/Ou.
Thus, in order to be assured that A E C1'_(9t), we would need the additional

regularity assumptions bi G Cc_(_). If these data do not satisfy these conditions,
then the L 2 direction of steepest descent defined by (49) is not appropriate.

Suppose it were the case that g E L 2 but g _ ("_ and we were to use p =

-g/I] g ILL:'in the method of steepest descent, say. If our current iterate a_ were
in X = Ca(_)), then immediately we would produce an new iterate a+ = a_+c_p

that is uot in X. In the computational setting, we could see a marked qualitative

change appear in the step from ae to a+; possibly "roughness" (oscillations) or
features of large magnitude.

However, our difficulties go away if we compute a direction of steepest descent

with respect, to a higher-order Sobolev norm, say. the H 1 norm. We do this as

follows. We seek a solution to the problem

f
minimize <r'(_), p> =/_d_ gp

subject to [IP [IH, --< 1.

The Lagrangian for this problem is

and the first-order necessary condition (which for this convex problem is suffi-

cient) is

:l,),_= dxg_+tt dx (Vp.V,_+p,1) =0
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forall r/E Hi(f2), with p > 0. But this condition is the same as saying that p
is tile weak solution of the Neumann problem

-V.(Vp)+p=-g/p inf2

dp
-- = 0 on 0_,
d,

where p > 0 is chosen so that IIp II/_, = 1. Thus, in order to compute the
direction of steepest descent in the HI-norm, we first need to compute g as

in (49), and then solve this auxiliary Neumann problem. The regularity of
solutions of elliptic problems is such that the resulting direction p is not. only
an element, of H 1, but also of CI,_(_), which is what we wished.

For higher-order Sobolev norms, one would solve the weak form of an aux-

iliary problem involving a higher-order operator. In this way one can obtain

descent directions of ever increasing smoothness, the Sobolev norm acting as a

preconditioner. In the computational setting, this would be done using a dis-

crete Sobolev inner product as the weighting for the norm in the optimization
algorithm.

8.3 Computing the action of the Hessian

Next. we will compute the action of the Hessian and discuss it.s representation.
From (12). V2F = iV x (V2e) IV, meaning

du du
V:2F(rh, '72) = V2((Wrh, Wr/2) = V2_'((rh, _a 7/1), (7/.,, _a r/2)).

We will see that to compute the action of the Hessian, we must solve two BVP.

one of the form (42) and the other of the form (43).
For i = 1,2, let.

du

1.,i = -'_a r_i.

We have

V2/((r/1. vl), (r/:, v.)) =/adz ulv2 =

while

D2h((711, tq), (_, u2)) = -V-(r/_V_,_

in (g_)q and

(A, D2h((Th, 1.'13,(712,w.)))iH_o),

= _adx_T1V_Vv2+_dx_7_.V,I

- V. (7]:Vvl)

'_7/j 1
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Then

or in termsof thevariouslinearfunctionals,

du x du du × du I
, , g¢_

If we let

__

du × du du × du

da daT]l + -_a (7]lV_)-4-'_-7/_xT"d-_-/']l'

then we see that 0 E L 1 and

(_7°-F 71, _-_)= I¢172, (51)

giving us an integral representation of the action of the Hessian on rh. As in the
case of the representation (50) of the derivative, the choice of domain X and
the smoothness of the other data in the problem will determine whether 6 E L 2

or is even more regular.

9 Further observations on the adjoint approach

and the representation of the derivative and

Hessian

A natural question to ask is when F'(a) can be represented in the form (36).

Obviously (36) is natural for a problem posed on L_-, such as many control

problems, since then the Riesz Representation Theorem for Hilbert spaces tells
us that there exists g E L 2 for which (F'(a), p} = (9, P)L"" However, many

problems, such as parameter estimation problems, are not. usually posed a prwri
on a Hilbert space such as L-_--there are typically boundedness or regularity

constraints on the coefficients in differential operators. So, how common should

we expect, the representation (36) to be?

The following observation might make us hopeful that the derivative gener-

ally, can be expressed in the form (36). Suppose the domain X, whatever its
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naturaltopology,is asubsetof the Sobolev space H k for some k > 0, and the
derivative F'(a) is actually a continuous linear functional in the norm of Hk:
for some C > 0,

I (F'(a), p) I < CII P II,-,_ (52)

for all p E X. Using the Hahn-Banaeh Theorem we can extend F'(a) to a
bounded linear functional on all of H k. We may identify the dual of H k with

the negative norm Sobolev space H -k [2]. This characterization of (Hk) ' differs

from that given by the Riesz Representation Theorem in terms of the H k inner

product: H -k is defined to be the completion of the space of functionals v on
H k of the form

p)_/__ = j vp, p E Hk, (53)

for some v E L 2. The completion is taken with respect to the norm

II_,ll_k = sup I(,_, p)L_ I.
IIp [IHk_<l

If (52) holds, then F'(a) E H -k, and since the functionals of the form (53)

are dense in H -k, we might hope that we will be able to express F'(a) in the

desired form (36), or at the very least, approximate it by such simple functionals

for which it is trivial to compute a direction of steepest descent. Moreover,

functionals of the form (53) are also dense in the duals of other spaces of interest.
such as C 'k.

Unfortunately, the following elementary proposition points out. that our hope

for finding a representation of F'(a) of the form (36) and an associated L 2

direction of steepest descent is circumscribed. No cheating is allowed: If one
has a representation of F'(a) of the form (36), and this representation is well-

behaved in the sense that the representer g(a) can be used to determine an L"

direction of steepest, descent, that behaves reasonably as a function of a, then

morally the problem can actually be posed on L 2 to begin with.
PROPOSITION 9.1. Let X and H be Banach spaces such that X C H. Let

,_ be a contre.r ,subset of X and denote by _ the closure of S in H in the norm
on H.

Also suppose that F : S --+ IR is continuously differentiable in the topology
of X and that for all a E S and q E X.

<V'(a),'>x= <g(a),,).,

where 9(a) E H' is bounded in norm as a functwn of a on subsets of X bounded
tn the norm on H. Then F extends to a map F" 2--+ IR continuous in H.

Pro@ For b, c E B(O, R) 71S we have

F(b) - F(a) = (F'(c),b- a}x = <g(c),b- a)H
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for some c E ,5' on the line segment connecting a and b, so

I - F(a) I < IIg(d I1 ,II b- a 11.< Z.RIIb- II.

where Kn depends only on R. This shows that F is continuous on S" in the

topology of H, so we can extend F uniquely to a map F : E A B(0, R) _ /B
continuous in the norm on H. Since R > 0 wa,s arbitrary, the proposition

follows. [2

Suppose that. we either express F'(a) as a functional of the form (53), or

approximate it. by such a functional (as the density of such functionals in many

dual spaces might lead us to try). Then Proposition 9.1 says that either F
extends to L 2, or the representer v(a) cannot even be bounded in L 2 norm on

sets bounded in L'- norm, much less be continuous. In the latter case, when

F does not extend to L 2, the representer produced by the adjoint approach

is not by itself a meaningful representation of sensitivities or a direction of

steepest descent. In nonlinear programming terms, the descent, promised by

such a putative direction of descent is not meaningful since the function F is
extremely nonlinear with respect to the sense of distance. In the computational

setting, this means that the usual direction of steepest descent, with respect to
the Euclidean norm, i.e., the negative gradient of the discretized problem, may

have less and less meaning as the discretization becomes finer.

The conjugate gradient method applied to the BVP (3.5) in §7 manifests

this pathology. The infinite-dimensional operator )t does not extend to L 2, so

we should not expect a direction of descent computed with respect to the L 2

norm to be useful. The un-preconditioned conjugate gradient algorithm uses

approximations of exactly these bad directions of descent, and generally does
not work well. For a fine discretization, the quadratic form is too nonlinear in

the (2 norm for the (2 direction of steepest descent to be a useful predictor of

the decre&se we will see in that search direction.

10 Conclusion

One topic we have not discussed in this paper has been the practical details of the

implementation of sensitivity calculations for problem governed by differential

equations, particularly the adjoint approach. This is a large topic in its own

right, and there is a great deal of disagreement particularly over how the adjoint

approach should be implemented. One point of view is to derive the adjoint

equations in the infinite-dimensional setting and then discretize them as seen
fit. At the other end of the spectrum is the approach that works purely with

the discretized problem, and computes the associated derivatives. Automatic

differentiation is the extreme of this point of view; not only the discretized state

equation but. its solution scheme is differentiated. Intermediate to these points
of view is one that works with the elements of the discretized problems in ways
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that.areanalogousto howoneapproachestheinfinite-dimensionalsensitivity
calculation.

Our overview has emphasized the origin of sensitivity calculations in im-

plicit differentiation, and the connection between the sensitivity formulae and

variable reduction methods in nonlinear programming. We have stressed the

distinction between the derivative and directions of steepest descent as the key

to understanding the object and limitations of the adjoint approach. We hope

this perspective on the calculation of sensitivities for problems governed by dif-
ferential equations and other state equations will make discussion easier between

nonlinear programmers and those interested in the application of optimization
to their specific problems.

The interpretation of the adjoint equations in terms of the Banach space

adjoint we have discussed is general. The example of the adjoint approach

given in this paper considered a problem involving weak solutions of the gov-

erning differential equation, but. the ideas apply in the case of classical or strong
solutions.

It is not always possible to express the derivative in the form (36). This
sometimes occurs, for instance, with objectives F that involve traces of the state

u--restrictions of u to lower-dimensional surfaces--because the trace operation

makes Of/Ou a distribution. This distribution shows up on the right-hand

side of the adjoint problem, and the solution of the adjoint problem may be a

distribution that is not a function in the usual sense. In such cases, computing
a direction of steepest descent with a norm other than that of L 2. such as the

choice of a Sobolev norm discussed in §8.2, will produce a smoother representer

for F j, which, if sufficiently regular, may serve as a direction of steepest descent.

Computationally, the appearance of a distribution on the right-hand side
of the adjoint problem corresponds, say. to taking a function defined on the

boundary of a computational grid and injecting it into the interior as a function

that is supported only near the boundary. Computing a direction of steepest
descent, with respect, to a Sobolev norm smoothes out. this data.

Also note that applying the implicit function theorem to compute derivatives

for problems involving traces requires that we know that solutions of the state

equation are sufficiently smooth for the trace map to be continuous. An example

of a problem for which such trace theorems had to be derived as part of the

sensitivity analysis can be found in [19].

One could choose to view the question of norms and scaling that we have
discussed a.s a bogeyman from functional analysis and infinite-dimensional op-

tilnization. However, if one is attempting to use approximate a truly infinite-

dimensional optimization problem via discretization, then the issue of scaling

and the dependence of the direction of steepest descent on the choice of norm

will become manifest as the level of discretization increases, as our discussion in

connection with the conjugate gradient algorithm indicates. Even when consid-

ering the case where the design variables a truly reside in a finite-dimensional

domain, one needs to be aware of the issue of scaling. Moreover. when im-
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plementinganadjointapproachin eithercaseonewilt needto understandthe
natureofthe intermediatequantities.
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11 Appendix: Some results from operator the-

ory

Relegated to this appendix are some results on operators that are used in connec-
tion with the reduced Hessian in Theorem 2.2. These results are identifications

that allow us to make the general formula for the reduced Hessian look like the
familiar one in /R ".

Given Banach spaces Y, Z, we will denote by B(Y, Z) the space of bounded

bilinear maps from Y into Z. Then we have the following equivalences.

11.1 An isomorphism of the space of bilinear maps

There is a natural isomorphism between L(X, L(U, I")) and B(X x U, V), the

space of bilinear maps from X x U into V. Given A E L(X, L(U, V)), we may

define a bilinear map B(x, u) = (Ax, u). Conversely, given a bilinear map
B : X × U --+ _', we can define A E L(X, L(U, V)) via (Ax, u} = B(x, u).

11.2 Second derivatives as bilinear maps

The derivative of a map q) : Y -+ Z is a map D¢ : y _ Dt_(y) E L(Y, Z), so
its derivative, D2_, is a map D2_ : y ,--+ D2_(y) E L(Y, L(Y, Z)). Using the

identification in §ll.1, we may then canonically view D2q) as a bilinear map in

B(Y x Y. Z),

11.3 The adjoint of a bilinear form

A bilinear form B on /R _ x /R m has the form B(x, u) = xTBu = uTBTx for

some n x m matrix B. We may view B as mapping _7_" to linear functionals

(row vectors) in (/Rm) ' via B : x ,--+ xTB, and B T as mapping /R '_ to linear

functionals in (/R")' via B T : u _+ uTB T.

The general analog is the following. Suppose that B1 : X x U --+ /R and

B__ : U x X -4 /R are bounded bilinear forms and that Bt(x,u) = B2(u,x)
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for all x,u. Usingtheidentificationof §11.1,wehaveB1 E B(X x U,/R)

L(X, L(U, fig)) = L(X. U'). Likewise, we have B_ E L(U, X'), and

(Blx, u>= (B=u, x).

Then B_ : U" --+ X' and B x :X" -+ U'. Since there is a natural embedding

U C U". we may view B_ as a map B_ : U --+ X'. Likewise, we may view B x
as a map B x : X --+ U', as desired.

11.4 Composition of linear maps and bilinear forms

Given a bilinear form B(x, u) = xTBu = uTBTx on /R" x /R '=, then

B(Alxl,A_x2) = xr AT BAIx, = AT BAI(xl,x2)

T T - = ATBTA2(x2, xl)= x 1 At BTA2x .)

where we are defining the bilinear forms A_Bml(xi x2) and ATIBTA2(x_, xl)
in the obvious way.

The general analog is derived similarly. Suppose that B : X x U _ /R is a

bilinear form, A1 : X: -+ X, and As : X2 --+ X. Then using the interpretation
in §11.3 of B x : U -+ X' we have

B(Alxl,m>r2) = (A_B×A_)(x2)(.rl) = (AXBA1)(Xl)(X2) (54)
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